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A general method of obtaining the lower limits for limit loads is described, the essentials of which are as 

follows. The load acting on a structure is represented in the form of a functional series in powers of certain 

fundamental loads, for each of which, applied separately, the limit load coefficient (LLC) or a lower 

estimate for it is found. Using those estimates, the corresponding statically admissible stress fields and the 

coefficients of the expansion in the functional series, the lower limit is found for the LLC for the initial load 

distribution. Using the system of lower limits of the LLC for fundamental loads, a lower limit of the LLC for 

any distribution, including an alternating-sign distribution, can be found. This can be very useful when the 

load distribution on the structure changes with time, as in the case of exposure to snow or wind. 

MOST studies of limit loads ([l-5] and elsewhere) are devoted to the formulation and use of the 
kinematic method of the theory of limiting equilibrium, which gives an upper limit for the limit load. 
Finding lower limits is a more difficult problem, owing to the fact that the statically admissible stress 
fields constructed at each point of the structure must exceed the plasticity condition. Verification of 
this point-by-point inequality is a separate problem for each stress field, requiring either analytical 
estimates or numerical calculations. The various approaches used for structures of different types 
([6-121, etc.) have proved to be very time-consuming and not as simple as the kinematic method. 
Many of the estimates ([U-16], etc.) merely reduce to choosing statically admissible stress fields in 
particular cases. Only a lower limit, however, can provide an estimate for the safe load of a 
structure. 

1. Let the stressed state of a rigid plastic or an elastic perfectly plastic structure be described by 
generalized stresses Q, defined in a certain region S [17]. Each component F, of the generalized load 
F=(Fr, FZ, . . ., Fp) acting on the structure is the distribution vector of a certain part of the 
generalized load over the corresponding surface or line D, (Y = 1, 2, . . . , p) (some of which might 
be due to bulk forces). 

Suppose that there is a representation of the initial load in series form 

F = 5 ymFtm), ym 2 0; Fern) = (F,(m), . . . , Fim)) (1.1) 
m=l 

The vector functions F(m) are defined on the same sets D, (v = 1, 2, . . . , p), where the series is 
component-wise weakly convergent to F in L2(Dv). For each M = 1,2, . . . , we consider the partial 
sum of the series F,,, = -ylF(‘) + y2Fc2) + . . . + -y,,,,FcM) and denote by a!, @), ‘YM the LLC for 
separately applied loads F, Fcm) and FM, respectively. 

Suppose that for each of the generalized loads Fern) 
has been found: ,crn) 3 (~6~); 

applied separately, a lower limit for the LLC 
it might be that the exact value of &) is known. Then there exists a 

generalized stress field Q&“’ which balances the load c$‘F(~) and does not exceed the yield point: 
f(Qbm)) < 1. Here f is a convex stress function, positively uniform of the first degree, characterizing 
the form of the plasticity condition. 
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It is clear that c&a& and the stress field a,&wM is statically admissible for the load a&F,,, (the 
equilibrium equations are assumed to be linear). It therefore yields a lower limit for the LLC (Ye for 

F&f 

c& < olic; Q CuM (1.2) 

We will write the principle of virtual power for generalized real stresses Q, strain rates q and 
translational velocities v in a state of collapse corresponding to the load of crF 

JQqdS = (Y 5 $ FvdL% 
.v= 1 D, 

(1.3) 

We now write the principle of virtual power with respect to real generalized stresses QM in a state 
of collapse corresponding to the load aMFM and the velocity field v 

(1.4) 

From the local maximum principle [18] we have QMq<Qq, and thus from (1.3) and (1.4) 

Owing to weak component-wise convergence of the sequence Flu+F as M+ 03, the limit of the 
ratio written in square brackets exists and is equal to one. Taking the upper limit [19] as M+ CC in 
(1.15) (the ordinary limit might not exist), we have (Y 2 G(Y~. 

Finally, from (1.2), we obtain the limit 

crrJ<ar,<ar (1.6) 

Q. =lim&; cyo = Gr& = limc& =(,;$ (M-,=) 

Thus, to find a lower limit for the LLC a0 for load (1. l), only the values of the constants ym and 
estimates (~6~) of the LLC are needed for each load F@) applied separately. To obtain a more 
accurate limit (Y, , we also need information on the corresponding statically admissible stress fields 

Q6? and the accuracy of this estimate depends, in turn, on the choice of those fields. The stress 
fields Q&“) can be constructed directly, by fixing all but a few parameters and then maximizing the 
lower limit of the LLC with respect to those parameters. Furthermore, the solutions of simpler or 
known problems, as well as those of similar problems, such as those of the theory of elasticity, can 
also be used. 

As a special case, it follows from (1.6) that if the loads F(“) (m = 1, 2, . . .) are limit loads, then 
the load (1.1) is safe or limiting for 

E YmGll, Ym>O 
m=l 

2. We will consider the problem of finding the LLC for a prismatic rod for the joint action of an 
axial force T and a moment M (the two loads increase in proportion to the same parameter). Let C, 
be the components of the stress tensor in the Cartesian system of coordinates Xi (i, i = 1,2,3), with 
X3 axis along the rod. We introduce dimensionless variables xi = Xi/d, aii = &/a,, t = T/(d2us), 
m = M/(d3us), where d is the characteristic length, and a, is the yield point. As usual 

g11 = (722 = u12 = 0, and the other components of the stress tensor are subject to the von Mises yield 
condition d3 + 3(& + o-& ) d 1. 
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FIG. 1. 

For a rod of circular cross-section S, with circumference x:+x$ = 1 (in the case here d is 
dimensionless radius of the rod) when only one of the loads is acting the LLC are ([20], p. 69): 
CX: = +I-‘, CY; = 27~(3tiImI)-~. Wh en an axial force t and a torque m are acting jointly taking 
y1=y2=1, y3=y4=...=0 in (1.1) and (1.2) we obtain the estimate (Y>CQ= 
2421t]+3*/m/)-1. Th e corresponding statically admissible stress fields 

(1) 
a33 = signr, e!?) 

II 
= 0 (i+j<6), a12 

(‘) = cif2) = 0 

(2) 
013 = -x2R, (2) 

‘23 = xlR, R = signm [3(x: + x3)]-“’ 

yield the estimate 

a>cK* = cu@infs[a,?, f 3(u:s + o~~)]-~ 

afj = (~~~~~)~~’ + {cr&) 0:’ 

In this case, clearly, 

% = crp ai (a: t ffi)-’ = 2n(4t2 + 27 m2)-% 

Curves 1 and 2 in Fig. 1 are the boundaries of the range of statically admissible values oft and m 
corresponding, respectively, to LLC CX~ and LY,, i.e. the factors {(pt, pm): OS#~<CX~} and {(@, pm): 
0</3Sff* } . The result for (Y, is practically the same as the exact solution (the limit curve [20, p. 53j 
is the dashed line). 

For a rod of rectangular cross-section S bounded by straight lines 2 (xi / = 1, 2 Ix2 I = q (7 G l), 
when only one of the loads is acting, the LLC are [20, p. 701 

a1 - nItI-‘, a; 

The statically admissible stress fields have the form (K = +l) 

(1) 
a33 = sign t, 

a::)= ;I_ 

= n2(3 -77)(12@1 m I)-’ 

(1) 
%j = 0 (itj<6), 012 

(2) = ai = 0 

K fiin triangle Mr OMz 

(2) = 
0 in trapezium Mz Or O,M, 

a23 
-K/G in triangle M3 0M4 

0 in trapezium M4 O2 Or M, 

(Fig. 2). Then, as before, we have the limits 
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FIG. 2. 

cY>cuo = 772(3 - rj)[Q(3 - 77) I t t + 12vTl m I]-’ 

ff>ff, = cr;&x; +a2) * --% = 772(3-~)[172(3 -@2’2~+432m2~-” 

If the coefficients of Im 1 and 1 tl in Fig. 1 are replaced, respectively, by 12%%[~*(3 - q)] and 
l/(277), curves 1 and 2 will correspond to LLC a0 and (Y, in this case; there is no exact solution of the 
problem. 

3. Consider a circular or annular plate 0~ a<rd b of constant thickness 2h subjected to a 
distributed transverse bending load p (r). Here p (r) is a certain Riemann-integrable function, which 
is of alternating sign in the general case, and r is the radial coordinate. We introduce dimensionless 
variables 4 = pb2Mc1, x = db, 77 = a/b, where MO = Cr,h2. 

We define the sequence of partitions P, : q = _a$’ CX~) d . . . dxg) = 1 (n = 1,2, . . .) such that 

lim max Ax;“) = 0, 
n-r- l<iGtl 

A+ = xi’“’ - x;“-‘~ 

and in the segment [q, l] we consider the step function $;, which, on (xpt, xi(n)), takes the value 
q (tf”)), where tp) E [xl”_ , xi’“)]. The values of the function at the ends of the interval are arbitrary. 
It can be shown that the sequence $I~ converges to q(x) with respect to the norm L* (and, 
furthermore, converges with respect to the norm L’). 

Suppose that a lower limit for the LLC (lyO(zl, z2) is known in the case where the distribution of 
the dimensionless load is identical with the characteristic function K(zl, z2, x) of any segment [zl , 

z21 c I% 11: KC zl, z2, x) = 1 if xE [z, , q], and K(z,, 22, x) = 0 otherwise. Under the Tresca and 
the von Mises yield conditions a”(zl, z2) is also the lower limit for the load distribution 
-K(zl, zz, x). Then for the step function 

kn 

J/n = 2z q(tj”))K( xi’:), ) p, x) 
f= 1 

from (Z-6) we obtain the following limit for the LLC 

c$.cY;= 
[ 

kn 14(P) I -I 
;c -- 

;= 1 f_$+y, x!“) -,’ , I 

The corresponding limit for an arbitrary initial load distribution has the form 

(3.1) 

Consider, for example, a uniform circular spherically supported plate 0 = ~6x6 1 under the 
Tresca yield condition. In this case [20, p. 1141 the exact value of the LLC is 

G(Z1) z2) = 6 [3(zz’ - Zf) - Z(z2 - z:)j-” 
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Substituting this value into (3.1) and using the definition of a Riemann integral, we obtain the limit 
for the LLC for an arbitrary load distribution 

cu>cQ = f IQ(X) 1x(1 -x)dx 
( > 

-1 
(3.2) 

0 

In the case where the function q(x) has constant sign, czo is the exact value of the LLC [21], and 
the equality applies in (3.2). 

Suppose, for example, that q(x) = q1 + (q2 - ql)x (ql and q2 are constants); to fix our ideas take 
q1 >O, q2 <O. The limit (3.2) takes the form 

a> 12(41 - q2j3@14 -24:(12 -241423 +424)-i 

For a stepped load 

and from (3.2) 
-1 

lqjl[3(b~-u~)-2(~-a~)]} 

In the limit, this provides the limit for a set of concentrated annular loads Pi uniformly distributed 
around the circles 

4. Consider a hollow shell of constant thickness 2h, of rectangular cross-section OGXt <a, 
0<X2< b, the entire edge of which is clamped, and which is bent by a transverse load p (Xi, X2). 
We assume, as usual, that the middle plane of the shell can be described by the equation 

22 = H+K,X, +KzX2 +K,,Xf t2K,?X1Xz fKz2X2 

H, Kip Kii = const (i. j = I, 2) 

The equations of equilibrium of a shell in dimensionless variables have the form f22] 

n11,1 +n12,2 = 0. nl2,l tn22.2 = 0 

&I~II +‘W2nlz +k22n22 +mll,ll +217112,12+m22,22 = -4(x1,x2) 

xi = Xi/a, OGXl Gl, O<Exz <?j = b/a, kii = 2U21(,/h 

mii = Mii/Mo, nii = Nil/No, MO = a, h2, No = 2a,h, q = pa2fMo 

(4.1) 

(the comma in the subscripts denotes differentiation with respect to the respective dimensionless 
coordinate). Here kij are the dimensionless curvatures, Mij and iVij are the moments and shear 
forces, and a, is the yield point for uniaxial tension. 

We consider the Hodge plasticity condition [23] 

H(m) < 1, H(n) Q 1 (4.2) 

H(I) = I;1 - 4,122 +I,22 +31,2,; t = m,n 

When the edge is clamped, every force and moment field which satisfies Eqs (4.1) and the 
plasticity condition will be statically admissible. 

The system of equations (4.1) reduces to the single equation 

(ml1 +k&,rr +2(mr2 --k IZCP)JZ +(m22 +kli (~1,~~ = -Q(%x2) (4.3) 

where the forces in the shell are related to the stress function cp by the equations 
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n11 = YJ,22, n22 = cp,ll, n12 = -4.12 

We express the function 4 (x1, x2) in the form of a double Fourier cosine series 

Q(XI,X2) = 5 
x2 

ynm cosnrxl cosmn - = ‘5 lrnm 14nm 
n:m=O r) n,m=O 

We use the notation 

(4.4) 

x2 
Qnm = %m cosnarlcosmn-, x2 pnm = s,,sinnnx,sinm7f-- 

rt 71 

where s,, = 1 if ynm 2 0 and s,, = - 1 otherwise. 
We find the limits cy&,, for each of the basic loads qnm ; we then obtain the corresponding limit of 

the LLC for the initial load distribution q (.x1, x2), allowing for convergence of the Fourier series for 
norm L2, using the formula 

(4.5) 

Thus, we consider the shell subjected to the load 4 = A,,qn,,. If nmf0, we can represent the 
distribution of moments and the stress function in the form 

ml1 = Clqnm tC2Pnm, ml2 = c3qnm +c4pnm 

m22 = C$qnm +C6Pnm, 9 = c?q”m +%Pnm 
(4.6) 

(CI, c2, *. .f c, are constants). Substituting (4.6) into (4.3) and equating coefficients of Pnm and qnrn 
on the left- and right-hand sides, we obtain 

A nm = 7r2p2(cl +k22~,)-2nm9-1(c4 - h2c8)tm2tl-2(cs tk, 1c7)l (4.7) 

0 = n2Q2(cz +k22c8)-2nm?@3 -kx2c7)+m2(c6 +kll%) (4.8) 

We now substitute (12) and (14) into (10). After similar algebra, we arrive at the system of 
inequalities 

A&,,, i~~~~~q~~ +C~P,“, Q 1 (j = 1,2) (4.9) 

Here 

Al = 4 - CICs tG,z t%,z 2 0 

4 = 2c,c2 - clc6 t6c3c4-c2c5 +2c$c,, Cl = cl” - c2c,+c,2+3& 20 

A2 = P,c72 +82c? 2 0, B2 = w, +P2)C?%* CZ = 81c,z +fi2C7 220 

p1 = n4(m47jq4 - n2rn2?je2 tn4) > 0, p2 = 3n2m2n4~-2 > 0 

It can be shown that system (4.9) will be satisfied at each point of the middle plane of the shell only if 

A1 < 1, C1 G 1, A2 G 1, C, G 1 (4.10) 

From the theory of limiting equilibrium, the best lower estimate of crO,, is obtained by solving the 
following non-linear programming problem for each pair TZ, m (nm # 0): find the maximum value of 
A,, as a function of cl, c2, . . . , c8, with conditions (4.8) and (4.10). 

For a plate (kg = 0), an explicit limit can be found 

c) 

aiim = +@-TF t 2.3~%mq-'1 

f = n2 +m2qe2, s = 3-“(n2 - m2pP2) 

If n #O, m = 0, the force and moment field is taken in the form 

mi I = -Cl%zO, m22 = -B(X2) 4no. ml2 = -(c4x2 +c,)&z, ‘# = -C6qnO 
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Then from Eqs (4.4) it follows that nil = niz = 0, n 22 = c6n2~2q,o. After substitution into (4.3), 
we obtain An0 = -(k 22c6 + cl) n2r2 + 2c4nr+ 2c2. The system of inequalities 

@(g)co?nnxi + 3(c,xZ +c,)*sin*nrrx, < 1, c%n47r4cos2n7rxl < 1 

aqg) = c: - c,g +g2 

will be satisfied for all x1 E [0, l] only if 

@(g) G 1, 3(&,X2 +C5)* < 1, Czn47r4 < 1 (4.11) 

The numbers cs and c = c3 + %c2 v2 are extremal values of the function g (x2) in the segment [0, 
n]. Since the largest value of the positive quadratic function Q(g) is reached at one end of the 
interval, satisfaction everywhere on the plate of the first of the inequalities (4.11) is equivalent to the 
system 

@(c3) G I, @(c). < 1 (4.12) 

The second and third inequalities in (4.11) will be satisfied for all x2 E [0, 71 only if 

Ic5 I < 3-“, Ic4ntcg I < 3-‘, Ice I Q (nn)-2 (4.13) 

It is clear that if conditions (4.12) and (4.13) hold, then the maximum value of Ano is made up of 
the maximum of the function BnO = -cln2r2 + 8(c-~3) r,,2 under conditions (4.12) and the 
maximum of the function 2c4nr- k22c6n27r2 under (4.13). 

Both maxima are defined explicitly; as a result, we obtain the limit 

(11O n0 = 2(n4n4n2 t 192 ne2)(576 t 3n4n4q4)-’ t 4 .3-“nn/q 

A similar limit can be obtained for load qom (m # 0): 

a;, = 2(m4n4qe2 + 192 n2)(576n4 t 3m4n4)-” t 4.3-“mn/n 

To find the limit &,,,, we take the base load to be a uniformly distributed load of intensity 
qm =soo. In that case, the generalized force field can be written in the form 

mi 1 = so&Cl x* + c, y*q-* t l), nl 1 = -sooc4 

mz2 = soo(-c, Y*7)-2 + c* x2 t l), n22 = -sooC5 

ml2 = ~ooC3XY11-‘, 1112 = -soocg 

x=x,-?,& y=x,--%Q 

where cl, c2, . . . , c6 are constants. We find the corresponding load on the shell from the second 
equation of (4.1) 

4 = ~00~00. Aoo = Boo +Coo 

B 00 = kllc, +2k,zc, +k,,c,, coo = 2c,(l t n-2) - 2c,7)-r 

The second inequality of (4.2) in this case has the form 

cf -cqcg tc; +3c,2 < 1 

Then 

rn:, - m, r m22 t rnz2 t 3m:, = 

= M(x4 ty4n-4) -(Or -- 3c,z).r7-2x* yZ t(c* - c1)(x2 ty*Tj-2) t 1 < 

Q (%M + c* - $)(X2 +y*n-*) - (01 - 3c;)p-*x*.P + 1 

M = c: tcrc2,tc;, D1 = c: t4c,c* +cz 

(4.14) 

Since )x[<Y2, (yl<M77, we havex4G1/4X2,y4G%y2~2. 
We equate the following expressions to zero 
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FIG. 3 

M t 4(c, - Cl) = 0, Dr -3~; = 0 (4.15) 

Then the first inequality of (4.2) obviously holds everywhere in the shell. 
Thus, the maximum value of Am is made up of the maximum of Boo with the condition (4.14) and 

the maximum of Ccc under (4.15). It can be shown that the former is equal to 

2.3-‘/@; ‘krrk,, +ki2 tk;,)” 

We look for the maximum of Ccc in the case (4.15) as the maximum of a function of one variable 

C,,(c,) = 2c,(Itn-2)+2 .3-“q-‘f11 

2c, = -4-c, +&, D2 = -3~; t24ci + 16 

with Dl 2 0, D2 2 0, the second inequality being equivalent to 4 - 8 x 3- “* d c, d 4 + 8 x 3-l’*. This 
is an easy problem to solve by numerical methods. 

A computer algorithm for the numerical calculation of the lower limits of hollow shells based on the above 
technique has been written for the EC-1060 computer. A fixed number of terms of the series is used, and the 

non-linear programming problem of finding maxA,, with constraints (4.8), (4.10) is solved repeatedly, using 
the NPGLM program based on the method of penalties. Optimal plans obtained can, owing to the known error 
of the method, be either inside or outside the range defined by (4.8) and (4.10). In any case they should be 
projected on to the boundary of that range, that is, multiplied by numbers which will project them on to the 
boundary. A correction of this kind is possible, owing to the linearity of the entire problem and the uniformity 

of the restraints. 
We will estimate the load-carrying capacity of a clamped shell, the middle plane of which is described by the 

equation 

Z = H[l - 2(X,/a -%)” - 2(X,fb - Yz)‘] 

for two different load distributions: 

and 

4 = ‘/4a2n-1 sin TX, sin rx2/n (the solid line) 

4 = 36n%1~x~(l -x1)(1 -x,/n) (the dashed line), 

corresponding to the same total load on the shell. We take h/a = 0.02. The graphs obtained from a numerical 
calculation of the dependence of the LLC (Y = a(6), 6 = H/a for constant 7, as well as a = (y(n) at constant 6, 
are shown in Fig. 3. The limit (4.5) converges rapidly as the number of terms retained in (1.1) increases, and an 
error of less than 1% is obtained by keeping the first nine or ten terms of the series for each coordinate. 
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